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The continuous wavelet transform (CWT) has a frequency-adaptive time-frequency tiling
property, which makes it popular for the analysis of dispersive elastic wave signals. However,
because the time-frequency tiling of CWT is not signal-dependent, it still has some limitations
in the analysis of elastic waves with spectral components that are dispersed rapidly in time. The
objective of this paper is to introduce an advanced time-frequency analysis method, called the
dispersion-based continuous wavelet transform (D-CWT) whose time-frequency tiling is adap-
tively varied according to the dispersion relation of the waves to be analyzed. In the D-CWT
method, time-frequency tiling can have frequency-adaptive characteristics like CWT and
adaptively rotate in the time-frequency plane depending on the local wave dispersion. Therefore,
D-CWT provides higher time-frequency localization than the conventional CWT. In this work,
D-CWT method is applied to the analysis of dispersive elastic waves measured in waveguide
experiments and an efficient procedure to extract information on the dispersion relation hidden
in a wave signal is presented. In addition, the ridge property of the present transform is inves-
tigated theoretically to show its effectiveness in analyzing highly time-varying signals. Numeri-
cal simulations and experimental results are presented to show the effectiveness of the present
method.
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As an alternative to the Fourier-based method,
time-frequency analysis methods have received
much attention in various areas of engineering. In
particular, the analysis of highly time-varying sig-
nals such as dispersive wave signals in an elastic
medium is a crucial application of time-frequency
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analysis (Onsay and Haddow, 1994 ; Niethammer
et al., 2001 ; Lemistre and Balageas, 2001 ; Lanza di
Scalea and McNamara, 2004). Typical methods
for time-frequency analysis include the short-time
Fourier transform (STFT) (Gabor, 1946), the con-
tinuous wavelet transform (CWT) (Daubechies,
1992 ; Mallat, 1998), and the Wigner-Ville Dis-
tribution (WVD) (Wigner, 1932). Each method
has its own advantages and disadvantages so that
depending on the signal to be analyzed, one method
performs much better than another.

Although these methods can be used for the
analysis of dispersive waves, they often have dif-
ficulties when signals are (highly) dispersive. The
time-frequency resolution by STFT is indepen-
dent of the location in the time-frequency plane
so it may be inappropriate for the analysis of a
dispersive wave whose spectral components vary
rapidly in time. CWT using frequency-adaptive
time-frequency resolution can be more useful than
STFT in the analysis of wave signals but is ef-
fective only for those signals of hyperbolic time-
frequency characteristics (Mallat, 1998 ; Kim and
Kim, 2001). WVD has excellent time-frequency
resolution, but the smoothing of WVD is neces-
sary to eliminate cross—term effects. To overcome
the limitations of conventional time-frequency
analysis methods, various modifications of STFT
and CWT such as the optimal windowing (Jones
and Park, 1990 ; Sun and Bao, 1996 ; Jones and
Boashash, 1992 ; Hong and Kim, 2004) or adap-
tive ideas (Mallat and Zhang, 1993 ; Auger and
Flandrin, 1995 ; Mann and Haykin, 1995 ; Baraniuk
and Jones, 1996 ; Angrisani and D’Arco, 2002)
have been developed. Recently, Hong et al. (2005)
developed the dispersion-based STFT (D-STFT)
having adaptive time-frequency tilings in order to
analyze a certain class of dispersive waves.

By extending the idea used in (Hong et al., 2005)
for STFT, we aim to develop an adaptive time-
frequency CWT-based method, called the disper-

sion-based continuous wavelet transform (D-CWT).

The time-frequency tiling of D-CWT is adap-
tively rotated with respect to the dispersion char-
acteristics of the wave to be analyzed. Thus it can
better represent the local variations of dispersive
waves than CWT.

To show the effectiveness of the proposed adap-
tive method, the ridge property of D-CWT is in-
vestigated theoretically by using the stationary
phase method (Delprat et al, 1992) and com-
pared with that of the standard CWT. To apply
the developed D-CWT method to wave signals
whose dispersion relations are not known, we
suggest an iterative procedure to estimate these
relations. The effectiveness of D-CWT is checked
by numerical and experimental studies.

2. Dispersion-Based Continuous
Wavelet Transform

We define the dispersion-based continuous wave-
let transform, and introduce the procedure to es-
timate the dispersion relations of wave signals to
be analyzed. Finally, ridge property of the present
transform is investigated by the stationary phase
method.

2.1 Dispersion-based CWT

In this section, CWT is defined, because the
dispersion-based CWT (D-CWT) is comparable
with the conventional CWT. For a square-inte-
grable function f(¢), its continuous wavelet trans-
form Wfis defined as (Daubechies, 1992 ; Mallat,
1998)

Wfws)= [ f(Ovustiat (1)

1 < t—u >
Wz,s(l‘) \/S_ ¢f s (1b>
where ¥ denotes the complex conjugate of ¥ and
the function ¥,,(#) is obtained by scaling ¥ (¢)
by the scaling parameter s and translating it by
the translation parameter u.
The function ¥ (#) is called a mother wavelet
satisfying the admissibility condition
7 2
il 0]
/ Wl oo )
—~ ol
where (@) is the Fourier transform of ¥ (¢).
The existence of the integral in Eq. (2) requires
that

7(0) =0, ie. [“y(t)dt=0 3)
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In the present work, we consider only the Gabor
wavelet among analytic wavelets. The Gabor wave-
let has the smallest time-frequency box and its
shape can be adjusted to have a desired time sup-
port. The Gabor wavelet is a complex-valued mod-
ulated Gaussian function, defined as

¥ (t)=2"g(2) (4a)
g ( t) :We—ﬂ/zo‘z (4b)

where 7 is the center frequency and ¢ is a mea-
sure of the spread of ¥ (¢).

The dispersion-based CWT, D-CWT, is de-
fined by using a basis function that includes a
new parameter, d :

Wof (w.5)= [ £ (1) Pusalt)dt — (50)

Vu,s,a(t) =%¢< t_su >* (—id) V212 (5p)

where the symbol (*) in Eq.(5b) denotes the
convolution operator, and the parameter d de-
termines the amount of rotation of the time-fre-
quency box at (u,£=7/s),

d=d(u,&) = AE (6)

The physical meaning of Eq. 5(b) can be clearly
revealed in the frequency domain, as Eq. (5b) can
be expressed as

=/s &(sw—
=J?§(sw—71) e—z’(uaﬂr%wz)

where () is the Fourier transform of the Gaussian

—iiwz

>e—iuw 5

ﬁu,s,d((l))

e

(7)

window g (¢). Therefore, the group delay of the
basis function of Eq. (5b) in the time-frequency
plane is given by

(w) = jw [uw-l-id(?; §) wz}

=u+du,&w

(8)

Equation (8) means that the time-frequency box
of D-CWT can be obtained by rotating the time-
frequency box of CWT by using the parameter
d(u,&). Figures 1(a) and 1(b) show a compari-
son of the time-frequency tilings of CWT and D-
CWT, respectively. If each parameter d is chosen

with respect to the local wave dispersion, the dis-
persion-based time-frequency tiling in Fig. 1(b)
is obtained by adaptively rotating or shearing each
of the analysis atoms in the time-frequency plane
with respect to the wave dispersion relation.

To determine the rotating parameter d (u, ),
we may consider a uniformly sampled time-fre-
quency location (#;,&;) as shown in Fig. 2 (where
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Fig. 1 A comparison of time-frequency tilings.
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Fig. 2 The determination of the rotating parameter
d(u;&;) for the given dispersion relation
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u; (1=1,2,---,m) are the sampled times, and &
(j=1,2,---,m) are the frequencies of interest). If
the dispersion relation is known or estimated, the
group velocity Cg can be calculated. If a spec-
tral component corresponding to &; is measured
at t=u; (assumed to be incident at #=0), then
the traveling distance of the component can be
expressed as

D=Cqs (&) - us (9)

Let #,-1 and f;41 be the arrival times of the neigh-
boring spectral components belonging to £;_; and
&;+1. Then, one can write

ti (10)

__ D , _ D
Ce(&0)” ™ Cel&inn)

By using Egs. (6) and (10), the rotating parame-
ter d (u:;, &) can be calculated as

d(ui &) :%Iﬁ
D D (11)
_ Ce(€i1)  Cg(Ein)
Ej+1_fj—1

Because the rotating parameter d (u;, &;) in Eq.
(11) is linked to the local wave dispersion in the
time-frequency location (u; &;), the resulting time-
frequency tiling will be suitable for the analysis of
dispersive elastic wave signals.

2.2 Estimation of the dispersion relation for
D-CWT

To use the dispersion-based CWT, the disper-
sion relation of wave signals to be analyzed must
be known in advance. However, in general, the
dispersion relation is not known in actual situa-
tions. Therefore, a procedure to estimate the dis-
persion relations from experimental wave data is
needed. In this work, we present a dispersion re-
lation estimation procedure.

The proposed strategy applies an iterative esti-
mation scheme, in which D-CWT estimates the
dispersion relation iteratively by using the initial
dispersion relation determined by the standard
CWT. The estimation procedure is schematically
described in Fig. 3. Note that the dispersion re-
lation or the frequency-dependent group veloci-
ty, Ce¢(w), can be determined from the traveling
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Fig. 3 Proposed procedure for estimation of the
dispersion relation

distance and the arrival time of the wave signals
which can be extracted by ridge analysis. After
finding the initial group velocity by the standard
CWT, it is used in D-CWT. Then, the group
velocity is updated from the resulting D-CWT.
D-CWT is repeated until the estimated group ve-
locity satisfies the convergence criterion R (%) for
a prescribed small value ¢,

T Cel&)ha—Ce(&)4]
RO =Sl

<e (12

where j denotes the index of the considered fre-
quency £ and £k is the number of iterations. The
converged group velocity Cg is used to estimate
the rotating parameter d (u;,&;) by Eq. (11).

2.3 Ridge property of D-CWT

To show the effectiveness of D-CWT, we in-
vestigate its ridge property theoretically by using
the stationary phase method (Delprat et al., 1992).
For the subsequent analysis, the signal f(¢) is
assumed to take the following analytic form :

F () =As(t) e®D  (As(t) =20)
Flw)=As(w) e®s

(13a)
(13b)
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where As(#) and ¢s(¢) are a time-varying am-
plitude and phase of f(¢), respectively, and the
symbol (e) denotes the Fourier transform. To
evaluate Wpf (u,s), we used the Fourier-trans-
formed form of the basis function of D-CWT
defined as Eq. (5b):

Vus(w)=Vs 2(sw—n) e ™
{iu,s,d (CU) = &u,s((l)) eiing
=5 &(sw—n)d#s

where ¢g, denotes uw—+1/2da® and g(w) is
(47) Y4e=“"2. Then, D-CWT of £ (t), Wof (u.s)
is expressed as

(14a)

(14b)

Wof (u,5) = / “F (D) Fusalb) dt

ff ) Vusa(0) do (15a)

w) g (sw—17) e®dw

@(w>=$s(w) +$gd(w)

—du(0) tuottdwa e

In the neighborhood of a stationary phase point
or a ridge point w=&(=7y/s) where @' (w)
0 is met, the phase @ (w) can be approximated

|w:5:
by a second-order Taylor series as follows

0(0) Ho—8%0"(@

(16)

~0(8)+ (w8 0'(8) +
—0(8) +1- (080" (9

Under these hypotheses, D-CWT is expressed in
the (u,&) plane as

Wof (u,8) ”v / A8 §(s0—7) ele@ro-atee) gy
ie’s’07(¢) 17
_MA q"f’e(z(szfi@”(f”) "
Js'—i0"(8)

where @ is /s 77** From the transform result
of Eq. (17), the modulus of D-CWT, Mp(u, £)
and its phase ¥5(u, &) in the ridge (u, &) are ex-
pressed as

Mol )= ] oy (6500 (150

0@ a0

Wy(u,8) = 0(¢) %tan-l( "’";f) )+z<f4s+qq)>’;§<%>

(18b)

For highly time-varying signals such as disper-
sive elastic waves, the second derivative of the
phase $’s'(a)) can not be neglected because it re-
lates to the local time-varying patterns, namely,
the rotation property of the ridges in the time-
frequency plane. Thus, if the dispersion rate d is
chosen to match well with ¢¢ (@) of the analyzed
signal in the ridges, the second derivative term of
the phase in Eq. (le) will vanish :

@”(C() |w £— |w é+d|w 5_0 <19>

As a result, with condition of Eq. (19), D-CWT
can trace well the time-varying pattern of the ana-
lyzed signals with the selected dispersion rate d.
Under this condition, the modulus and phase of
D-CWT can be reduced to

M (0,6 = <As8). (200
Wy (u,8) ~Fo(&) +ub+5 d (0, 6) & (200)

If the dispersion rate is not used, D-CWT is ex-
actly equal to the standard CWT. Thus, the mod-
ulus M (u, ) of CWT is given by

AE) (R
st oe(E]n* (5 1528 J 20

Compared with Egs. (20a) and (21), the modulus
calculated by D-CWT is larger than that by CWT.
Consequently, D-CWT can capture the local vari-

M(u, &)~

ation of the signal more accurately by using the
dispersion rate and can provide more localized
time-frequency analysis results.

3. Numerical Investigation

In this section, we introduce the generation of
the wave signals for numerical tests, and then es-
timate the dispersion relation of the simulated
signals by the proposed method.

3.1 Wave signal generation for numerical
tests
Let us assume that a frequency-modulated
Gaussian pulse s (x=0, ) =sx () is generated at
the point x=0 by a transducer and propagates
along a waveguide. In the frequency domain, this
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pulse can be expressed as its Fourier transform,
S0,0)=Sulw) = [ sulhe*dt  (22)

When the propagating pulse arrivals at the point
x=xo, then Si(w) is shifted in phase by g~ %o,
where k£ (w) denotes the frequency-dependent wave-
number. If 4£(w) is known, then the Fourier trans-
form S (xo, w) of the pulse measured at point x=

Xo can be written as
S (%0, 0) = Sin (@) &% (23)

Consequently, the time-domain signal S (xo, £) mea-
sured at point x =x, can be obtained from the in-
verse Fourier transform as

st t) =5 [ [Sul@]e™do (24

Equation (24) is used to build the wave signals
at arbitrary locations for the numerical tests.

3.2 Estimation of the dispersion relation

D-CWT is applied to flexural and longitudinal
waves in a rod (with diameter=10 mm, Young’s
modulus £=209 GPa, and Poisson’s ratio v=
0.3). The effectiveness of D-CWT is checked by
examining how well the dispersion relation is es-
timated. In this work, the Gabor wavelet (o=1,
7=>5 in Eq. (4)) called the Morlet wavelet was
employed.

3.2.1 Case I: Flexural wave in a rod

Figure 4(a) shows the simulated wave pulses
generated by Eq. (24), which are based on the
wavenumber k(w) or the group velocity Cg(w)
calculated by the Pochhammer Chree equation
in a rod (Miklowitz, 1978 ; Graff, 1975). The cen-
ter frequency of the simulated pulses is 30 kHz
and they have traveling distances of 0.5 and 2 m,
respectively. The considered mode belongs to the
lowest flexural F(1,1) mode in a rod (Graff,
1975).

For the application of the proposed procedure
illustrated in Fig. 3, CWT was performed as can
be seen Fig. 4(b). To evaluate the group velocity
Ce(w) from this CWT data, the wave arrival
times 7(w) were extracted by the ridge analysis

1.5 1 T T
1
0.5} 1
@
k=]
2 !'J
E 0 A
=2
m
E
05 Pulse 1 Fulse 2
At 3
-1.5 : : L
o 05 1 15
Time (sec) x10?
(a)
xg® , —
6 - .

: +——— Theaoretical group del?;y Gunve

Frequency (Hz)

Time (sec) «10*
(b)

Fig. 4 CWT of a simulated flexural wave signal.
(a) The simulated pulse signal, and (b) the
contour plot of CWT of the simulated pulse
signal

of CWT data. In calculating the group velocity
Ce(w), the following formula defined between
two pulses was used

DpulseZ_Dpulsel (25>
Tpuise2 (C()) — Tpuisel (CU)

Cg(w):

where Dpuise is the pulse traveling distance. The
group velocity calculated using Eq. (25) was used
for the first D-CWT calculation, and then D-
CWT was repeated until the estimated group ve-
locity Cg(w) met the convergence criterion of
Eq. (12) for €=0.01. In Fig. 5(a), the estimated
group velocities Cg(w), according to the itera-
tions, are compared with the theoretical group ve-
locities based on the Phochhammer-Chree equa-



Dispersion-Based Continuous Wavelet Transform for the Analysis of Elastic Waves

3000

R(1)=0.0191 —
R(2)=0.0021 i S o)

2800-
2800 =

2400 »

2200 A

Group Velocity (m/s)

ww

2 3 4 5 6
Frequency (Hz) x 10

(a)

Frequency (Hz)

Time (sec) 10t

(b)
Fig. 5 D-CWT of a simulated flexural wave signal.
(a) Estimation of the dispersion relation,
and (b) the contour plot of D-CWT of the

simulated pulse signal

tion. As can be seen in Fig. 5(a), as the number
of iterations increased, the estimated group veloc-
ity approached the exact group velocity. Figure
5(b) shows a contour plot of D-CWT for the
final estimated group velocity. Since the time-
frequency tiling of D-CWT is based on the wave
dispersion relation, it can trace the exact group
delay curve.

To show the high time-frequency localization
property of D-CWT, the second pulse within the
simulated wave signal of Fig. 4(a) was consider-
ed. In Fig. 6, the shape and magnitude of CWT
and D-CWT data at frequencies of 14, 30, and 44
kHz are compared. As can be seen in Fig. 6, D-
CWT gave higher energy localization than CWT

2153
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Fig. 6 The magnitudes of the second pulse shown in
Fig. 4(a) for CWT and D-CWT at frequen-
cies of 14, 30, and 44 kHz
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Fig. 7 CWT of a simulated longitudinal wave sig-

nal. (a) The simulated pulse signal, and (b)
the contour plot of CWT of the simulated
pulse signal
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did. Furthermore, the magnitudes calculated us-
ing D-CWT were much larger than those calcu-
lated using CWT, as explained in the section
2.3.

3.2.2 Case II: Longitudinal wave in a rod

Figure 7(a) shows the simulated wave pulses
centered at 150 kHz, which have traveling dis-
tances of 1 and 3 m. The considered mode belongs
to the lowest longitudinal L (0,1) mode in a
rod, derived from the Pochhammer-Chree equa-
tion. As can be seen in Fig. 7(b), CWT was not
suitable for the analysis of the given type of wave
signals whose group delay varied quickly at high
frequencies because CWT has basically a low fre-
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Fig. 8 D-CWT of a simulated longitudinal wave

.
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signal.(a) Estimation of the dispersion rela-
tion, (b) the contour plot of D-CWT of the
simulated pulse signal

quency resolution at high frequencies. However,
D-CWT characterized the dispersion behaviors
of these wave signals more exactly than CWT
did. For the given wave signal, the dispersion re-
lation was estimated. As shown in Fig. 8(a), the
group velocity estimated by D-CWT after the
sixth iteration, where the convergence criterion
of Eq. (12) for €=0.001 was met, was very close
to the exact group velocity. D-CWT using the
finally estimated group velocity gave the reliable
result of Fig. 8(b).

4. Experimental Verification

In this section, the performance of the disper-
sion-based CWT is examined experimentally, and
the proposed estimation procedure of dispersion
relation is applied to some dispersive elastic wave

Steel ball
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B \’ I
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Time (sec) % 10"‘
(b)
Fig. 9 (a) The experimental setup used to generate

the Ao Lamb waves in a plate, and (b) the
measured Ao Lamb wave signal
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signals. In this work, we consider the fundament-
al modes known as the first anti-symmetric Ao

N
<
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5
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2
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Fig. 10 CWT and D-CWT of the measured Ay Lamb

wave signal.(a) The contour plot of CWT,
(b) an estimation of the dispersion relation,
and (c) the contour plot of D-CWT

mode and the first symmetric So mode of the
Lamb wave propagated in a thin plate (Miklowitz,
1978 ; Graff, 1975).

Figure 9(a) shows the experimental setup em-
ployed in the experiments for the Ay Lamb wave
generation in a plate. In this experimental set-
up, a simply supported aluminum plate with a
thickness of 3 mm was excited by the impact of
a steel ball dropped at the point A. The generat-
ed Ao Lamb wave was measured at location B
by using a patch-type magnetostrictive transducer
(Cho et al., 2004) at a sampling frequency of 2.5
MHz.

The signal shown in Fig. 9(b) is the measured
Ao Lamb wave. Figure 10(a) shows the plot of
the transformed result by CWT and the successive
wave arrivals due to the wave reflections from
both ends of the plate. To determine the group
velocity of the measured Ao Lamb wave, the adap-
tive dispersion relation estimation scheme using
D-CWT was applied. The arrival times of the first
and second ridges were used to estimate group
velocity. Figure 10(b) shows the iteratively esti-
mated group velocity by D-CWT and the theo-
retical group velocities (Graff, 1975). The finally
estimated group velocity that satisfies the con-
vergence criterion of e=0.01 was utilized for D-
CWT calculation of the given A, Lamb wave
signal. Figure 10(c) shows the transformed result
by D-CWT. The successive wave arrivals are
clearly seen using D-CWT because of its high
time-frequency localization.

D-CWT was also applied to the analysis of the
So Lamb wave signals in an aluminum plate
shown in Fig. 11(a). Figure 11(b) shows the mea-
sured Sp Lamb wave signal which consists of four
dispersive pulses having traveling distances of 0.2,
0.68, 1.74, and 2.22 m, respectively. The trans-
formed result from CWT is plotted in Fig. 12(a)
and the history of group velocity estimation is
shown in Fig. 12(b). The finally estimated group
velocity where the convergence criterion of €=
0.001 was used for D-CWT calculation and the
result was plotted in Fig. 12(c). As can be seen in
Fig. 12(c), D-CWT traced the dispersion char-
acteristics of the given wave signal more exactly
than CWT did.
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Finally, the performance of D-CWT was com-
pared with another adaptive time-frequency anal-
ysis method reported in (Hong et al., 2005) known
as the dispersion-based STFT (D-STFT). As stud-
ied in (Hong et al., 2005), D-STFT can be used
effectively for the analysis of dispersive wave sig-
nals. Figures 13(a) and 13(b) show the trans-
formed results using D-STFT for the measured
Ay Lamb wave shown in Fig. 9(b) and the Sy
Lamb wave shown in Fig. 11(b), respectively. Al-
though D-STFT also characterizes well the dis-
persion behavior of the given signals, the reada-
bility in the time-frequency plane is more im-

Function | Power
Generator Amplifier

Voltage l—l
‘ amplifier }7 Oscilloscope

- @A @5 Lec ]

o

5 / 5 ,
Patch-type magretostrictive Patch-type magnetostrictive

transducer for wave generation  transducer forl wave reception

770 mm 200 mym 240 mm

Magnitude

Time {sec) ¥ 10'4

(b)
Fig. 11 (a) The experimental setup used to generate
the Sy Lamb wave in a plate, and (b) the

measured So Lamb wave signal

proved when D-CWT is applied. (Compare Figs.
10(c) and 13(a), 12(c) and 13(b))
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4900
2
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2

Time (sec)
(c)

CWT and D-CWT of the measured S, Lamb

wave signal.(a) The contour plot of CWT,

Fig. 12

(b) an estimation of the dispersion relation,
and (c) the contour plot of D-CWT
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Fig. 13 D-STFT of the measured Lamb wave signal.

(a) The contour plot of D-STFT of the mea-
sured Ao Lamb wave signal, and (b) The
contour plot of D-STFT of the measured S,
Lamb wave signal

5. Conclusions

In this work, the dispersion-based continuous
wavelet transform (D-CWT) was developed to
analyze some class of dispersive elastic waves. To
use the developed method for the analysis of sig-
nals whose dispersion is not known in advance,
we developed an iterative procedure to estimate
the dispersion relation. As shown from the theo-
retical investigation on the ridge property of D-
CWT, D-CWT provided dispersion information
more accurately than the standard CWT because
the time-frequency tiling of D-CWT adaptively
varied to the dispersion of the wave signal to

be analyzed. Numerical and experimental studies
confirmed the effectiveness of the present method
for analyzing dispersive waves.
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